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Figure 1: Video Generation as a Proxy for Robot Policy Learning. Given an initial observation
and a natural language task prompt, our model generates a video of a robot executing the task
(top) jointly with generating robot actions via a separate diffusion network (middle). This modular
design enables learning from action-free video data and improves generalization to unseen scenarios,
offering a scalable and sample-efficient alternative to traditional behavior cloning.
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Abstract: Despite tremendous progress in dexterous manipulation, current vi-
suomotor policies remain fundamentally limited by two challenges: they struggle
to generalize under perceptual or behavioral distribution shifts, and their perfor-
mance is constrained by the size of human demonstration data. In this paper, we
use video generation as a proxy for robot policy learning to address both lim-
itations simultaneously. We propose Video Policy, a modular framework that
combines video and action generation that can be trained end-to-end. Our re-
sults demonstrate that learning to generate videos of robot behavior allows for
the extraction of policies with minimal demonstration data, significantly improv-
ing robustness and sample efficiency. Our method shows strong generalization
to unseen objects, backgrounds, and tasks, both in simulation and the real world.
We further highlight that task success is closely tied to the generated video, with
action-free video data providing critical benefits for generalizing to novel tasks.
By leveraging large-scale video generative models, we achieve superior perfor-
mance compared to traditional behavior cloning, paving the way for more scalable
and data-efficient robot policy learning.
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1 Introduction

The fundamental challenge in visuomotor policy learning today is to create a robot system that
robustly generalizes to new situations. Methods such as behavior cloning [1, 2] have achieved
impressive performance in many tasks ranging from pick-and-place operations to complex dexterous
manipulation [3, 4, 5]. However, state-of-the-art methods struggle to transfer learned behaviors
to novel situations, failing to generalize across distribution shifts ranging from simple variations
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(e.g., color changes) to more complex challenges such as adapting to entirely new tasks [6, 7].
While fields like computer vision and natural language processing have tackled these issues by
collecting increasingly larger training sets to capture all variations [8, 9, 10], robot action and human
demonstration data are expensive to collect, making real-world generalization challenging.

Recent advances in generative video models [11], such as OpenAI’s Sora [12], are a promising
direction for addressing these generalization challenges. Trained on massive datasets capturing di-
verse dynamics, situations, and physical interactions, they potentially encode powerful priors about
how objects move and how actions affect the world. Thus, there is a strong interest in extracting
robot policies from these foundation models to create robust control systems that can generalize to
diverse scenarios and tasks. However, prior work along this direction has faced a fundamental trade-
off: methods either rely on hand-crafted decoding mechanisms (such as tracking) [13] that limit
expressivity and fail to capture the model’s full knowledge, or they use learned action decoders that
introduce their own generalization gaps due to limited demonstration data [14]. Very recently, Hu et
al. [15] have proposed a flexible approach for combining video generation and policy learning, but
their work lacks a detailed analysis of the interplay between the two objectives.

This paper demonstrates that video generative models are robot policies that generalize behavior to
both visual and task distribution shifts. Our proposed model, Video Policy, is illustrated in Figure 1.
We systematically study video diffusion models and demonstrate that, as long as video generative
models synthesize accurate videos of robot behavior, then learned decoders only need a surprisingly
small amount of demonstration data to learn to map videos into actions that a robot can directly
execute. Remarkably, we find that a small decoder can be trained to generalize to unseen tasks,
suggesting that the video generative model is serving as the policy, while the decoder primarily
serves as an interface rather than learning the task policy itself.

Since the policy is strongly based on the video synthesized by a large-scale generative model, and
the video model has been trained on a diverse set of videos, the approach generalizes to new ob-
jects, scenes, and new tasks with less training data than existing methods. In both simulation and
real-world experiments, we show that using strong video priors improves performance compared to
behavior cloning methods. Additionally, through detailed ablation studies, we provide insights into
crucial design choices, guiding future research directions for capitalizing on generative video models
for robot learning. We will release our code, models and implementation details for reproducibility.

2 Related Works

Behavior Cloning. Behavior cloning (BC) is a widely adopted method in manipulation tasks, where
policies are learned from demonstrations using supervised learning. Initial BC approaches focused
on end-to-end models that mapped states directly to actions, yet these methods often encountered
difficulties with multimodal behavior and tasks that require high precision [16, 17, 18]. To overcome
these challenges, later research investigated Energy-Based Models (EBMs), which determine actions
by minimizing an energy function during sequence optimization [19, 20, 21, 22]. More recently,
conditional generative models have emerged as a promising alternative, effectively capturing diverse
demonstration behaviors and improving task success rates [2, 23, 24]. Unlike earlier models, our
approach is based on video diffusion models with an extra action diffusion head to predict robot
action jointly with pixels.

Visual Pretraining for Policy Learning. There has been extensive research on pre-training per-
ception models within visuomotor policies to achieve more robust visual representations. One com-
monly used objective is video prediction, where the model learns to forecast future frames from
current observations, thereby capturing the dynamics and causal relationships essential for physical
interactions [25, 26, 27, 28, 29]. Other popular self-supervised techniques include contrastive learn-
ing [26, 30, 31, 9] and masked autoencoding [32, 33], which both contribute to developing strong
visual features for robotics. Additionally, some studies have focused on learning a generalizable
reward function through visual pretraining to support reinforcement learning tasks [34, 35, 36].



Video Models for Decision-Making. Early contributions in video generation [37, 38, 25] set
the stage for employing generative models to predict future frames in a sequence. With recent
advances in text-to-video generative models [12, 11, 39, 40, 41], there is renewed interest in
harnessing internet-scale video data for robotics. One line of research leverages video genera-
tive models as a form of world simulation, predicting future video sequences conditioned on ac-
tions [42, 14, 12]. Meanwhile, another approach utilizes video-language models to aid in long-
horizon planning [43, 44, 45]. Several works also explore the joint pixel and action diffusion archi-
tecture [15, 46, 47, 48, 49]. Compared to these concurrent works, we focus on providing detailed
analysis and systematic evaluations.

3 Methods

3.1 Overview

Given an input scene vy and a task description ¢, Video Policy generates a sequence of actions
a; € RF to accomplish the task, where k is the action dimension of the robot’s end-effector. We use
a video generator f that synthesizes videos of robot roll-outs {¢;} as the backbone for the policy,
and a learned model g to predict the robot actions from the synthesized frames:

{0t} = f(vo, ) )]
{at} = g(¥o, ..., i) where ; = fi(vo,c) 2

such that f; is the ¢th hidden layer of the video generator. This architecture is attractive because it
integrates passive pre-training from internet videos to provide priors for generalization with active
demonstrations to learn strong policies in the physical world. We achieve this by fine-tuning f and
g to generate videos and actions of the task being executed. At inference time, the generated actions
are directly executed on a robot to perform manipulation tasks.

3.2 Architecture

To integrate video generation with policy learning, we design a denoising diffusion architectures f
and g which jointly predicts future video frames {0; } and action sequences {a;}. To achieve this, f
is a video U-Net ug and g is an action U-Net ay. See Figure 2 for an overview.

Building off of the Image-To-Video Stable Video Diffusion (SVD) [11] architecture, we condition
the Video U-Net pg via cross-attention on the CLIP [9] embedding ¢(c) of the textual description
of the task ¢, and in the second stream we channel-wise concatenate a VAE-encoded image zp =
VAE(vp) with the encoded noisy frames of the video z1, ...z; (we use the frozen VAE from SVD).

We extend the architecture to decode actions using an action U-Net, oy, which is conditioned on
intermediate features from the video denoising network. At each denoising step ¢, five evenly spaced
hidden embeddings (layers 9, 14, 17, 20, 23) are extracted from the decoder layers of the video U-
Net. These spatiotemporal features are passed through a CNN adapter, which transforms the latent
embeddings into a single vector h; at denoising step i. This vector serves as a global conditioning
input to a 1D CNN U-Net oy, adapted from Diffusion Policy [2], which then generates the sequence
of robot actions {a;} via

{at} = ag(a, i, h;). 3)
This occurs per denoising step ¢, tightly integrating the video and action predicting, and allowing
actions and videos to be generated simultaneously.

3.3 Learning

Video Policy is trained in two stages, where the video model is first trained for video prediction, and
then the action model is trained for behavior cloning, with a dataset D = d;...d,, of expert demon-
strations. Each demonstration d; includes a video observation of the scene {v, }, text description of
the task ¢, and the corresponding robot actions {a;}.
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Figure 2: Video Policy takes an image of the initial environment state together with the noise vectors
corresponding to the future frames and actions as input. It then jointly diffuses the frames and
actions, using the representation of the frames as conditioning for the action denoiser. This modular
design allows for training the two networks separately, opening way for action-free learning of the
task dynamics via video generation.

Our video model, yy is trained to minimize:
Lvideo - Ezo,e,iH |6 — o (Ziv 7;7 ¢(C)7 Zi,O)Hz]a (4)

where ¢ refers to a denoising time step, z; o refers to the noisy latent embedding of the first frame,
and z refers to the denoised latent video.

Our action head, «y is trained to minimize:
Laction = an,e,i[”E - Oé@(ai, 7;7 hi)||2]7 (5)

where h; refers to the feature vector from our CNN adaptor at noise level <.

Since we want the video network to drive the policy due to its extensive pre-training, and oy to just
decode the robot action, we stop the gradients from L.t from propagating back to pg. As we
show in the experiments, this leads to significant improvements in performance.

Once Video Policy is trained, we deploy it by providing an initial visual observation of the scene vy
and task description ¢. The model then generates a sequence of predicted video frames {?;} jointly
with a corresponding sequence of robot actions {a;}. The predicted actions {a;} are subsequently
used to directly control the robot’s end-effector to execute the manipulation task.

4 Experiments

4.1 Implementation Details

We use three cameras (one mounted on the gripper and two on either side of the scene) as video
observation input. The three views are concatenated along the temporal dimension, such that v; €
RY©"hw - and the model is trained to predict 8 frames per camera view (24 frames in total). For
Libero10 benchmark we adopt a slightly different setup to train using the agent and gripper camera
views to predict 12 frames per camera view. To align with the pretrained SVD model’s expected
input, we pad a single camera frame to the start of the sequence, resulting in a total of 25 frames for
all models. During training, we set a constant learning rate for video prediction to 1le—5 and action
prediction to 5e—5b.



Categor Task 3DA DP3 DP- DP- GROOT FPV DP-VLA UVA Ours Ours
oy [521 [52] ResNet CLIP [53] [521  [54] 50 demos | 300 demos

PnPCabToCounter 0.00 0.04 0.06 0.00 0.20  0.10 0.10 0.26 0.36 0.48

PnPCounterToCab 0.00 0.02 0.06 0.02 036  0.14 0.32 0.18 0.42 0.52

PnPCounterToMicrowave | 0.00 0.06  0.06 0.02 0.13  0.10 0.56 0.10 0.52 0.22

Pick and Place PnPCounterToSink 0.00 0.00 0.14 0.08 0.10  0.08 0.30 0.16 0.44 0.48

PnPCounterToStove 0.00 0.00 0.00 0.02 024 0.04 0.22 0.16 0.58 0.54

PnPMicrowaveToCounter | 0.00 0.06 0.06 006 0.16 0.12 0.18 0.18 0.44 0.28

PnPSinkToCounter 0.00 0.00 0.10 0.22 0.33  0.30 0.56 0.38 0.64 0.56

PnPStoveToCounter 0.00 0.00 0.02 0.06 0.29  0.26 0.62 0.24 0.64 0.70

OpenSingleDoor 0.00 024 042 0.32 0.59 0.74 0.42 0.54 0.68 0.70

Doors OpenDoubleDoor 0.00 020 070 082 0.15 092 0.80 0.90 0.96 0.94

CloseDoubleDoor 0.00 056 0.78 0.84 0.75 0.78 0.84 0.76 0.98 0.90

CloseSingleDoor 0.14 062 0.78 0.48 0.83 0.84 1.00 0.88 1.00 0.90

Drawers OpenDrawer 0.00 036 0.64 0.60 079 0.72 0.66 0.28 0.46 0.54

CloseDrawer 0.00 048 0.82 0.96 0.99 094 1.00 0.72 0.96 1.00

Twisting Knobs TurnOnStove 0.10 024 038 0.28 0.56  0.66 0.64 0.50 0.30 0.50

& TumOffStove 002 006 016 008 027 020 016 014 | 006 0.04

TurnOnSinkFaucet 0.06 032 066 0.66 0.63 0.70 0.56 0.62 0.84 0.76

Turning Levers | TurnOffSinkFaucet 0.28 042 0.68 0.70 0.73  0.78 0.72 0.64 0.78 0.92

TurnSinkSpout 0.26 054 0.62 0.26 0.53 0.52 0.90 0.64 0.40 0.58

CoffeePressButton 0.08 0.16 0.76 0.68 0.85 0.90 0.86 0.84 0.92 0.96

Pressing Buttons | TurnOnMicrowave 0.06 038 0.68 0.88 0.78  0.68 0.84 0.94 0.92 0.96

TurnOffMicrowave 0.32 054 0.62 1.00 0.71 0.96 0.86 0.96 0.90 1.00

Insertion CoffeeServeMug 0.00 0.18 044 060 0.73 048 0.64 0.78 0.76 0.70

CoffeeSetupMug 0.00 0.04 0.10 0.12 023  0.16 0.30 0.20 0.22 0.58

Avg. Task Success Rate [0.06 023 041 043 050 051 0.57 050 063 | 066

Table 1: Comparison to the state of the art on the validation set of RoboCasa using success rate
computed over 50 roll-outs per task. Video Policy using 50 human demonstrations is able to achieve
state-of-the-art results on average, as well as on most of the individual tasks. we include results of
our model trained with 300 demos to show improved performance with more training data.

Model | DP-C [48] DP-T[48] OpenVLA [48] UniPi[48] 1 [48] m(-FAST[48] UVA[48] Ours
Avg. Task Success Rate ‘ 0.53 0.58 0.54 0.00 0.85 0.60 0.90 0.94

Table 2: Average success rates for tasks in the Libero10 benchmark. Video Policy achieves the high-
est overall performance compared to baselines. Per-task results are reported in the supplementary.

4.2 Simulation Experimental Setup and Baselines

We perform quantitative evaluation of Video Policy using the RoboCasa [50] and Libero10 [51] sim-
ulation benchmarks, which spans a total of 34 manipulation tasks. For each task, both benchmarks
provide 50 human demonstrations. In the RoboCasa benchmark, demonstrations are replayed at a
resolution of 256x256 pixels. For Liberol0, the demonstrations are resized to the same resolution.
The action space of the simulation benchmarks are defined as a; € R7, which includes the 6-DoF
pose of the gripper and a scalar value representing the gripper’s open or closed state. For Robocasa
evaluation, we follow the evaluation protocol outlined by [50]; specifically, each task is evaluated
over a total of 50 rollouts executed in five different RoboCasa scenes. For Liberol0 evaluation, we
follow the evaluation protocol in [48].

As Robocasa baselines, we train Unified Video Action (UVA) [48] and (ImageNet pre-trained)
ResNet- and CLIP-based variants of Diffusion Policy on the same dataset, using identical inputs
and evaluation environments as our video-conditioned policy model. For additional Robocasa and
Libero10 baselines, we compare to the reported results from several prior works [52, 53, 48].

4.3 Quantitative Results

We begin by comparing Video Policy to the state-of-the-art on the validation set of the synthetic
RoboCasa benchmark and report the results in Table 1. Firstly, we observe that Video Policy out-
performs the baselines by a large margin on average, as well as on most individual tasks. The



improvements are especially noticeable on Pick and Place tasks which feature a significant distri-
bution shift between training and test environments, highlighting the robustness of our approach.
Methods capitalizing on explicit 3D representation of the environment [55, 56], including the very
recent FPV [52], struggle to achieve competitive performance on this benchmark requiring rich se-
mantic understanding. Diffusion Policy [2] demonstrates robust performance, but fails to scale when
equipped with a strong CLIP [9] visual-language representation (columns 5, 6 in Table 1).

Most notably, Video Policy demonstrates competitive performance to the baselines that capitalize
on large-scale visual-language (DP-VLA [54]) and video pre-training (GROOT [53]). In addition,
both of these methods use more RoboCasa demonstrations for behavior cloning, with GROOT using
300 and DP-VLA 3000 automatically generated demonstrations per task via MimicGen [57]. In
contrast, Video Policy requires only 50 demonstrations per task to achieve state-of-the-art results by
effectively aligning the video and action generation objectives.

Finally, the concurrent UVA approach, which also proposes a joint model for video and action pre-
diction, fails to generalize to the challenging RoboCasa benchmark due to its over-reliance to the
single-camera setup. In contrast, our straightforward architecture can easily support any configu-
ration of the environment. We also compare Video Policy to UVA and other strong baselines on
the Libero-10 benchmark in Table 2, where we achieve significantly higher average task success
rates, consistent with our results on RoboCasa benchmark. We analyze the key factors behind the
effectiveness of our approach in detail next.

4.4 Analysis

In this section, we set out to explore the inter-

play between the video and action generation. Model Variant | Avg. Task Success Rate

To this end, we first investigate the effect of Joint 0.57
isolating the two training objectives in Equa- ~ 2-Stage . 0.63
tions 4 and 5 compared to joint training. Injoint ~_ NO Video Tuning 0.09

training we fine-tune the model with both train- Table 3: Ablation study on the RoboCasa vali-

ing objectives, whereas mn 2-stage tr.alnmg W€  dation set, analyzing the interplay between video
first fine-tune SVD for video generation on the ;54 gction generation. Results show that learning

training set of RoboCasa, then freeze the video (o generate policy-execution videos is both neces-
diffusion U-Net weights, and learn the action sary and sufficient for learning robust manipula-
denoising head on top of this frozen representa- tion representations.

tion. Remarkably, as shown in row 2 in Table 3,

the 2-stage variant has a significantly higher performance in terms of average success rate compared
to the end-to-end trained model (denoted as ‘Joint’ in the table, per-task results are reported in the
supplementary). This result suggests that learning to generate videos in the raw pixel space is a
strictly more general objective than action generation.

Next, we study the properties of the video generation objective in greater detail. Firstly, we explore
the importance of fine-tuning SVD on RoboCasa in the last row of Table 3. Our results indicate that
learning to generate videos of the robot executing a policy is a crucial component of our training
pipeline, whereas vanilla SVD pretraining is insufficient for the task. This finding further supports
our earlier observation that video generation of policy execution serves as a strong proxy for policy
learning. In Figure 3 we show that the prediction horizon of the video generation model is a key
factor in the effectiveness of this proxy objective. All model variants predict actions 1.6 seconds
into the future, while the video prediction horizon is varied ranging from O (i.e., reconstructing
the conditioning frame) to longer rollouts. We plot the average task success rates on RoboCasa —
separately for tasks with and without distribution shift between training and evaluation environments
— as a function of the video prediction horizon used during training (distribution shift details and
per-task results are provided in the supplementary). We roll out action prediction for 0.8 seconds
across all variants. While longer-term video prediction universally improves performance, the effect
is more significant for tasks that require stronger generalization. These results highlight that learning
accurate environment dynamics is critical for achieving generalization in policy learning.



Action-free videos can provide a nearly limitless
data source for learning the environment dynam-
ics. To demonstrate their utility, we start from
SVD fine-tuned for video generation on the en-
tire training set of RoboCasa (Stage 1 from the 2-
Stage variant in Table 3), but learning the action
denoising head in Equation 3 on only half of the
tasks sampled at random. We evaluate the result-
ing model on the full set of 24 tasks and compare
to the DP-ResNet baseline trained on the same 12
tasks in Figure 4. The results demonstrate that
Video Policy can achieve strong generalization
to the unseen tasks during policy training (right
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Figure 3: Success rate of Video Policy as a func-
tion of the video prediction horizon. Learning

the dynamics of the environment is critical for
achieving generalization in policy learning, as
evident by the larger effect of prediction hori-
zon on the task with distribution shift.

half of the figure) by capitalizing on action-free
video generation pre-training. In contrast, the
DP-ResNet baseline, which is not able to utilize
action-free data, only exhibits a minimal degree
of generalization to unseen tasks.
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Figure 4: Generalization to tasks with no policy supervision by capitalizing on action-free video
data. Both our behavior cloning head and the baseline DP are trained on 12 tasks on the left, but our
video generation model also has access to action-free videos for all 24 tasks. The upper bounds on
the right correspond to models trained with full action supervision for comparison.

4.5 Real-World Results

In this section, we further validate the generalization advantages of policy learning via video genera-
tion in the real world. Our evaluation encompasses five tasks: Open Drawer, Pick and Place, M&Ms
to Cup, Upright Object and Stack Cups. The details of the evaluation are discussed below.

Robot Setup. For the five tasks, human demonstrations were collected using a handheld gripper
equipped with the same end effector as the robot. The setup closely mimics the RoboCasa camera
configuration. During each demonstration, a human operator performs the task with the gripper
while RGB video is recorded, along with action states of the gripper — including its 6D pose,
parallel jaw opening width, and the force exerted by the jaws. The gripper pose is tracked using an
Intel RealSense T265 camera, and the gripping force is measured with a uniaxial load cell. The data
collection and the robot execution setup are illustrated in Figure 2. For each task, 200 demonstrations
are collected for training.

Experiment Setup. We trained Video Policy following the simulation pipeline from the SVD check-

point and evaluated our model in 5 manipulation tasks, using a suite of experiments designed to test
its generalization with variations in object location, interacting with unseen objects, and changes in



background appearance. Details of the training and testing object sets for each task are provided in
the supplementary material.

The tasks are as follows: Open Drawer involves the robot grasping a drawer handle and opening
it to over 50% of its full extension, with two drawers at different heights. Pick and Place has the
robot picking up an object from a cluttered table and placing it into a container, with 11 objects
and 10 containers used. In M&Ms to Cup, the robot picks up an M&M and places it in a cup, with
distractors present; the training set includes 6 M&M colors and 5 cups. Upright Object involves the
robot repositioning an object on the table to stand upright, with 6 manipulable objects and distractors.
Stack Cups has the robot stacking one cup into another, using 6 different cups on a cluttered table.

Robot Execution

Vary Object Location

Unseen Objects

Unseen Background

Figure 5: Qualitative results for Pick and Place generalization experiments in the real world. Video
Policy demonstrates strong robustness to object locations, appearance and background colour.

4.6 Generalization Analysis

We report success rates over 10 roll-outs in Table 4, with qualitative examples in Figure 5 and the
supplementary material.

Generalization to Object Locations. In this experiment, we use the same objects as in the training
demonstrations but exact positions can vary between training and testing, serving as a baseline with
minimal distribution shift for comparison with other scenarios. We observe that the model performs
best on the Open Drawer, Pick and Place, and M&Ms to Cup. A successful example on the Pick and
Place task is shown in the first row of Figure 5, where the model accurately places an object into
a difficult-to-see transparent cup. Failures in Upright Object and Stack Cups are due to unrealistic
video predictions — e.g., failing to generate upright placements or gripper-induced toppling —
likely due to limited real-world physics priors in the pretrained SVD model.

Generalization to Unseen Objects. When tested on novel objects with different shapes or colors,
the model maintains high performance across tasks. Figure 5 (second row) shows a successful
example of the Pick and Place task with an irregularly shaped object not seen during training. Our
model successfully adjusts the parallel-jaw gripper to find a suitable grasp and places the object into
the target cup. Notably, the Upright Object task shows significant improvement, likely due to the test



objects being opaque, in contrast to the transparent cups used during training. The results suggest
that policy learning through video generation can improve robustness to novel objects.

Generalization to Unseen Background. Training on a white surface, we now test with black, red,
or blue backgrounds. We find that Open Drawer, Pick and Place, Upright Object, and Stack Cups all
maintain strong performance under these conditions. As shown in the last row in Figure 5, the model
successfully completes the Pick and Place task even when the table is covered with an unseen blue
background. Once again, Upright Object shows improved performance likely because the colored
backgrounds enhance the visibility of the transparent cups. In contrast, performance on the M&Ms
to Cup task decreases. The robot gripper often fails to accurately localize the M&Ms, suggesting
that background color changes can adversely affect robot actions that require high precision.

Tasks Vary Object Location ~ Unseen Objects  Unseen Background
Open Drawer 0.8 1.0 0.9
Pick and Place 1.0 0.9 0.8
M&Ms to Cup 0.8 0.9 0.2
Upright Object 0.3 0.7 0.8
Stack Cups 0.3 0.2 0.2

Table 4: Generalization performance in real world. Success rates computed over 10 roll-outs per task
across three experiments, evaluating different generalization dimensions: object location, objects
appearance, and background appearance. Video Policy shows strong robustness across all three
dimensions in the real world.

5 Conclusion

In this work, we investigate the interplay between video and action diffusion objectives for policy
learning. Our results show that generating pixels can serve as an effective proxy for learning policy,
substantially improving the robustness and generalization of behavior cloning. A key insight from
our study is that casting policy learning as video generation unlocks the ability to leverage action-
free data — broadening the scope of usable training signals. As generative models continue to scale
with massive in-the-wild video datasets, this paradigm offers a promising path toward more scalable
and generalizable policy learning for real-world manipulation.

6 Limitations

Our study has several limitations. First, it is restricted in the scale of simulation benchmarks and
a single real-world embodiment. Additionally, we explore only one instantiation of video gener-
ation models — Stable Video Diffusion (SVD). While our analysis is more extensive than prior
works, broader validation across tasks, environments, and model families would further strengthen
the findings. Second, the computational cost of video diffusion models remains a major practical
bottleneck, particularly for real-world deployment. However, recent advances in accelerating diffu-
sion inference [58, 59, 60] offer a promising path toward real-time performance, which could unlock
broader applicability in robotics.
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A Appendix

A.1 Video Model Implementation

We adapted the pretrained SVD model, which generates 25-frame video sequences. In our setup,
frame 1 is a padded frame, frames 2-9 correspond to the gripper view, frames 10-17 to the left
camera view, and frames 18-25 to the right camera view. To enable the model to generate such
multi-view videos, we modified the per-frame image embedding based on the viewing camera of
each output frame. By default, the generated video contains 8 frames for each view and represents
the robot’s actions in default RoboCasa action space over 32-steps prediction horizon (the videos
are subsampled using a stride of 4). This setup is consistent across both simulation and real-world
experiments. Training hyperparameters are detailed in Table 5. We fine-tuned the model on eight
A100 GPUs over approximately two weeks and observed that training any further did not yield per-
formance improvements. For the real-world model, we initially trained at a resolution of 256 x 192 to
speed up training, followed by training at a higher resolution of 448x320 to improve performance.
During inference for all experiments, we use 30 denoising steps with a constant classifier-free guid-
ance scale of 2.0. On an A100 GPU, a 25 frame video takes around 9 seconds to generate with a
resolution of 256 x 256 and 30 diffusion steps.

All simulation experiments follow the standard RoboCasa evaluation protocol, except for our study
on video prediction horizons. Per-task results under the standard protocol are shown in Table 6. For
the video prediction horizon analysis in Figure 2, we adopt a different protocol to isolate the ef-
fect of distribution shift. Specifically, we aimed to investigate how per-task performance is affected
by distribution shift as a function of the prediction horizon. To isolate this effect, we do not use
the standard RoboCasa protocol where all evaluation environments are out-of-distribution and in-
stead evaluate on sampled environments from the MimicGen dataset. These environments share the
same layout and style as the training set but differ in object positions and object categories through
synthetic generation. In particular, the pick-and-place tasks involve the greatest variation in object
position and type. Figure 6 compares training and evaluation environments for two example tasks:
Open Single Door and PnP Counter to Cabinet. While the door type and position vary minimally in
Open Single Door, the PnP Counter to Cabinet task involves substantial differences in object types,
illustrating the degree of distribution shift. We are interested in comparing the performance of pick-
and-place tasks, which exhibit significant distribution shift, to other tasks with minimal shift, across
varying prediction horizons. The corresponding per-task results are presented in Table 8.

Models Resolution Lr  Batch Steps Precision

Joint Training 256x256 le-5 32 368866 16-mixed
2-Stage Training 256x256 le-5 32 368866 %2 16-mixed

No Video Tuning 256x256 le-5 32 368866 16-mixed

Joint Training (16 Steps) 256x256 le-5 32 368866 16-mixed
Joint Training (0 Steps) 256256 le-5 32 368866 16-mixed
2-Stage Training (Half Tasks) 256x256 le-5 32 368866 %2 16-mixed
2-Stage Training (Libero10) 256256 le-5 32 170000+140000  16-mixed

Joint Training (Real World) 256x192 — 448x320 le-5 32 331500492960  16-mixed

Table 5: Hyperparameters for video model training. Resolution: image and video resolution, Lr:
learning rate, Batch: batch size, Steps: training steps for the evaluation checkpoint, Precision: light-
ning trainer precision.

14



Category | Task | Joint 2-Stages No Video Half Tasks DP Half Tasks
PnPCabToCounter 0.12 0.36 0.00 0.24 0.00
PnPCounterToCab 0.38 0.42 0.00 0.40 0.06
PnPCounterToMicrowave | 0.42 0.52 0.00 0.20 0.00
Pick and Place PnPCounterToSink 0.36 0.44 0.00 0.36 0.04
PnPCounterToStove 0.54 0.58 0.00 0.52 0.00
PnPMicrowaveToCounter | 0.34 0.44 0.00 0.28 0.06
PnPSinkToCounter 0.62 0.64 0.00 0.50 0.00
PnPStoveToCounter 0.60 0.64 0.00 0.48 0.00
OpenSingleDoor 0.58 0.68 0.06 0.66 0.52
Doors OpenDoubleDoor 0.96 0.96 0.00 0.08 0.00
CloseDoubleDoor 0.76 0.98 0.14 0.12 0.00
CloseSingleDoor 0.96 1.00 0.28 0.96 0.62
Drawers OpenDrawer 0.60 0.46 0.00 0.68 0.66
CloseDrawer 0.96 0.96 0.10 0.94 0.56
Twisting Knobs TurnOnStove 0.38 0.30 0.10 0.16 0.20
8 TurnOffStove 0.12 0.06 0.06 0.04 0.14
TurnOnSinkFaucet 0.40 0.84 0.34 0.58 0.56
Turning Levers | TurnOffSinkFaucet 0.66 0.78 0.20 0.48 0.20
TurnSinkSpout 0.32 0.40 0.20 0.32 0.00
CoffeePressButton 0.92 0.92 0.34 0.92 0.66
Pressing Buttons | TurnOnMicrowave 0.86 0.92 0.10 0.58 0.72
TurnOffMicrowave 1.00 0.90 0.28 0.24 0.08
Insertion CofteeServeMug 0.68 0.76 0.06 0.00 0.00
CoffeeSetupMug 0.12 0.22 0.00 0.18 0.06
Avg. Task Success Rate \ 0.57 0.63 0.09 0.41 0.21

Table 6: Per-task success rates out of 50 trials across different experimental variants following
the RoboCasa evaluation protocols. Joint: end-to-end trained model jointly predicting video and
actions. 2-Stages: video and action predictions are trained separately. No Video: frozen video U-
Net initialized with SVD pretraining. Half Tasks: video and action models trained separately, with
the action denoising head trained on only half of the tasks. DP Half Tasks: ResNet-based CNN
Diffusion Policy trained on only half of the tasks.
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GROOT [53]
Category Task 30 demos 100 demos 300 demos Ours
PnPCabToCounter 0.01 0.04 0.20 0.36
PnPCounterToCab 0.02 0.07 0.36 0.42
PnPCounterToMicrowave 0.00 0.00 0.13 0.52
Pick and Place PnPCounterToSink 0.00 0.01 0.10 0.44
PnPCounterToStove 0.00 0.00 0.24 0.58
PnPMicrowaveToCounter 0.00 0.00 0.16 0.44
PnPSinkToCounter 0.00 0.06 0.33 0.64
PnPStoveToCounter 0.00 0.00 0.29 0.64
OpenSingleDoor 0.20 0.55 0.59 0.68
Doors OpenDoubleDoor 0.00 0.13 0.15 0.96
CloseDoubleDoor 0.00 0.43 0.75 0.98
CloseSingleDoor 0.49 0.68 0.83 1.00
Drawers OpenDrawer 0.09 0.42 0.79 0.46
CloseDrawer 0.77 0.96 0.99 0.96
. TurnOnStove 0.15 0.26 0.56 0.30
Twisting Knobs | 1, offStove 0.05 0.16 027 | 006
TurnOnSinkFaucet 0.33 0.60 0.63 0.84
Turning Levers | TurnOftSinkFaucet 0.49 0.68 0.73 0.78
TurnSinkSpout 0.24 0.42 0.53 0.40
CoffeePressButton 0.28 0.57 0.85 0.92
Pressing Buttons | TurnOnMicrowave 0.56 0.74 0.78 0.92
TurnOffMicrowave 0.47 0.58 0.71 0.90
Insertion CoffeeServeMug 0.04 0.34 0.73 0.76
CofteeSetupMug 0.00 0.02 0.23 0.22
Avg. Task Success Rate | 017 0.32 050 | 0.63

Table 7: Per-task success rates on the RoboCasa benchmark, comparing GROOT trained with varying
numbers of demonstrations to Video Policy. The per-task GROOT results are reported from [53].
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Category | Task | Joint 32-Steps  Joint 16-Steps  Joint 0-Steps

PnPCabToCounter 0.28 0.24 0.14

PnPCounterToCab 0.70 0.50 0.22

PnPCounterToMicrowave 0.56 0.28 0.06

. . er e . PnPCounterToSink 0.56 0.42 0.06
With Distribution Shift | b, 500 e rToStove 0.82 0.46 0.02
PnPMicrowaveToCounter 0.58 0.30 0.02

PnPSinkToCounter 0.62 0.52 0.12

PnPStoveToCounter 0.80 0.56 0.14

OpenSingleDoor 0.92 0.88 0.26

OpenDoubleDoor 0.98 0.96 0.58

CloseDoubleDoor 0.80 0.74 0.40

CloseSingleDoor 1.00 0.98 0.84

OpenDrawer 0.48 0.34 0.18

CloseDrawer 1.00 0.96 0.92

TurnOnStove 0.46 0.18 0.22

. . er e .p. | TurnOffStove 0.20 0.20 0.22
Without Distribution Shift | 7. 5, qiniFaucet 0.36 0.40 0.16
TurnOffSinkFaucet 0.76 0.72 0.74

TurnSinkSpout 0.60 0.70 0.72

CoffeePressButton 0.96 0.92 0.22

TurnOnMicrowave 0.80 0.48 0.38

TurnOffMicrowave 0.80 0.42 0.22

CoffeeServeMug 0.74 0.66 0.36

CoffeeSetupMug 0.30 0.26 0.10

Avg. Task Success Rate | 0.67 0.55 0.30

Table 8: Video Policy per-task success rates out of 50 trials for different video prediction horizon
variants evaluated in sampled environments from the MimicGen dataset. Joint 32-Steps: joint video-
action model trained with a 32-step video prediction horizon. Joint 16-Steps: same model trained
with a 16-step video prediction horizon. Joint 0-Steps: model where the video prediction output is
identical to the input images.

Libero10 Tasks \ Success Rate
LIVING ROOM SCENE?2 put both the alphabet soup and the tomato sauce in the basket 0.96
LIVING ROOM SCENE?2 put both the cream cheese box and the butter in the basket 1.00
KITCHEN SCENES3 turn on the stove and put the moka pot on it 1.00
KITCHEN SCENE4 put the black bowl in the bottom drawer of the cabinet and close it 0.98
LIVING ROOM SCENES put the white mug on the left plate and put the yellow and white mug on the right plate 0.94
STUDY SCENEI pick up the book and place it in the back compartment of the caddy 0.96
LIVING ROOM SCENES put the white mug on the plate and put the chocolate pudding to the right of the plate 0.88
LIVING ROOM SCENEI/ put both the alphabet soup and the cream cheese box in the basket 1.00
KITCHEN SCENES put both moka pots on the stove 0.80
KITCHEN SCENES put the yellow and white mug in the microwave and close it 0.86
Average | 0.94

Table 9: Video Policy per-task success rates out of 50 trials for the 10 tasks in Libero10 benchmark,
following the evaluation protocol in UVA [48].
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Figure 6: Example training and evaluation environments for the Open Single Door and PnP Counter
to Cabinet tasks. Evaluation environments are sampled from the MimicGen dataset, which intro-
duces variation in object types and positions for pick-and-place tasks such as PnP Counter to Cabi-
net, but have minimal variation for tasks like Open Single Door.
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A.2 Unified Video Action Model Baseline

As a baseline, we train the Unified Video Action Model, initialized using a pretrained VAE and the
MAR image generation model [61]. We modify the model to accept three images as conditioning
frames and to generate all three camera views of the video at a resolution of 256 x256, by concate-
nating frames along the temporal axis. The model is trained on the same dataset and evaluated under
identical conditions as our video-conditioned policy model.

A.3 Diffusion Policy Baseline

As baselines, we train ResNet- and CLIP-based variants of the CNN Diffusion Policy using the
implementation from UMI [62], both initialized with pretrained weights (ImageNet pre-training in
case of ResNet). We use ResNetl18 and CLIP-Base variants. The models are trained on the same
dataset and evaluated under the same conditions as our video-conditioned policy model. To match
the text conditioning in the video model, we condition both variants on the task name using the
same CLIP text encoder. The resulting text embedding is concatenated with the image observation
embedding as global context. Each variant uses three separate encoders for the three camera views.
For the ResNet-based model, input images are resized to 256x256, while the CLIP-based model
uses 224 x224 inputs. Both variants are trained with a batch size of 768 to predict 32 future steps
and roll out 16 steps in simulation, matching the video model setup.

A.4 Real-World Experiment Setup

The demonstrations are recorded using RGB cameras mounted on the left, right, and on the gripper
itself. The side-view RGB cameras are Intel RealSense D435, while the gripper-mounted camera
is a Basler fisheye camera. The gripper’s pose is tracked using a RealSense T265 camera, and the
parallel jaw opening is estimated via ArUco marker tracking. A uniaxial force sensor mounted on
the gripper measures grasping force. All sensors operate at 30 Hz. The model is trained to predict
32 steps into the future the relative gripper pose, relative jaw position, and absolute grasping force,
given inputs of three RGB images from three camera views. During deployment, the robot follows
the predicted gripper pose and jaw position for 24 of the 32 predicted steps using impedance control.
To prevent the robot from grasping objects with insufficient force, a small gripper closing correction
is applied if the predicted gripper force during rollout exceeds the actual measured force by more
than 300 grams. The object sets and experimental setups are shown in Figures 7-13.

Examples of alignment between video predictions and real-world executions during the Pick and
Place task are illustrated in Figures 14 and 15, highlighting the video policy’s ability to generate
coherent visual predictions and corresponding robot actions. Additional qualitative results are avail-
able in the supplementary video.

Training Background Unseen Backgrounds
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Figure 7: Unseen backgrounds set. In the training set, the four tasks including Pick and Place,
Mé&Ms to Cup, Upright Object and Stack Cups are performed on a white table. In the unseen
backgrounds set, the same tasks are evaluated on tables covered with black, red, and blue cloths to
test generalization to novel background colors.
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Figure 8: Open Drawer object set. The training and vary object location sets include interactions
with both the upper and lower drawers of a single cabinet. In the unseen objects set, the cabinet is
covered with masking tape to simulate a different appearance. In the unseen background set, the
floor is replaced with a constant red and black fabric.
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Figure 9: Pick and Place object set. The training set consists of 10 containers and 11 objects. The
testing set includes 4 objects with novel shapes and colors to evaluate object generalization.
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Figure 10: M&Ms to Cup object set. The training set includes 5 cups and M&M:s in 6 different col-
ors. The testing set contains 5 novel objects with varying shapes and colors to assess generalization
to unseen items.
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Figure 11: Upright object set. The training set includes 6 objects and the testing set contains 5
objects with novel shapes and colors to evaluate object generalization.
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Figure 12: Stack Cups object set. The training set includes 5 cups and the testing set contains 5 cups
with novel shapes and colors to evaluate object generalization.
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Figure 13: Data collection and robot experiment setup. During data collection, a human demonstra-
tor performs the task using a modified robot gripper. In the robot experiment, the robot executes the
tasks with the same setup.
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Figure 14: Comparison between video prediction and real-world rollout. For an example Pick
and Place task while grasping the object, we show the three camera views during video prediction
alongside the corresponding real-world rollout. The alignment between the predicted video and the
resulting robot actions demonstrates the effectiveness of Video Policy in generating coherent video
and actions.
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Figure 15: Comparison between video prediction and real-world rollout. For an example Pick and
Place task while placing the object into the container, we show the three camera views during video
prediction alongside the corresponding real-world rollout. The alignment between the predicted
video and the resulting robot actions demonstrates the effectiveness of Video Policy in generating
coherent video and actions.
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